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ABSTRACT: Machine-learned coarse-grained (CG) models have the potential for simulating
large molecular complexes beyond what is possible with atomistic molecular dynamics.
However, training accurate CG models remains a challenge. A widely used methodology for
learning bottom-up CG force fields maps forces from all-atom molecular dynamics to the CG
representation and matches them with a CG force field on average. We show that there is
flexibility in how to map all-atom forces to the CG representation and that the most
commonly used mapping methods are statistically inefficient and potentially even incorrect in
the presence of constraints in the all-atom simulation. We define an optimization statement for
force mappings and demonstrate that substantially improved CG force fields can be learned
from the same simulation data when using optimized force maps. The method is demonstrated
on the miniproteins chignolin and tryptophan cage and published as open-source code.

Atomistic molecular dynamics (MD) simulations provide
fundamental insight into physical phenomena by

elucidating the behavior of individual atoms.1−3 While current
simulations scale to millions of atoms and millisecond time
scales, their application is constrained by an extremely large
computational cost. One leading approach to investigate even
larger systems for longer time periods is reducing the
computational burden via coarse-graining, where molecular
systems are simulated using fewer degrees of freedom than
those associated with the atomistic positions.4 Particulate
coarse-grained (CG) models typically define CG degrees of
freedom (referred to as beads) as instantaneous averages of the
positions of multiple atoms.5−10 Once the resolution (i.e., the
definition of the CG degrees of freedom) is chosen, the central
challenge is finding a force field that accurately represents the
physical interactions that can be used to simulate the complex
behavior of large molecular systems.
Bottom-up coarse-graining focuses on CG force fields that

systematically approximate the CG behavior implied by a
reference atomistic force field7,9,10 and has been recently used
to parametrize machine-learned CG force fields based on deep
neural networks.11−22 However, these applications require
large amounts of MD data from the reference atomistic force
field and, in the case of proteins, have often not quantitatively
reproduced free energy surfaces of high-dimensional reference
systems.11,13,15,16,19 These inaccuracies are often attributed to
limited data, because the functional forms underpinning the
force field are highly flexible.
There are multiple approaches to parametrizing bottom-up

CG force fields.7,9,10,23 Unfortunately, many24−33 of these

approaches require the repeated converged simulation of
candidate CG force fields, creating a significant computational
barrier to their application in complex systems.21,34 A leading
approach circumventing repeated simulation is multiscale
coarse-graining (i.e., “variational force matching”), where CG
potentials are parametrized to directly approximate the
effective mean force of an atomistic force field projected to
the CG resolution.35−37 Noid et al.36 showed that minimizing
the mean-squared deviation between a CG candidate force
field and suitably mapped atomistic forces yields the many
body potential of mean force (PMF) and, in doing so,
reproduces the reference configurational distribution at the
appropriate resolution.
Numerous aspects of the coarse-graining procedure have

been studied in depth; we refer readers to recent reviews for a
comprehensive overview.9,10,23 For example, previous work has
extensively studied the influence of the atom-to-bead
mapping,14,31,38−47 functional form of the candidate poten-
tial,12,13,15,16,48−52 and other details of the fitting rou-
tine.20,33,34,53−57 However, to our knowledge, no work has
directly and systematically investigated the influence of the
mapping that projects fine-grained (FG) forces to the CG
resolution. When the theoretical optimization statement
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defining force matching in the infinite sample limit is
considered, this force mapping only affects a seemingly
inconsequential constant offset to the variational statement
determining the optimal force field.10,36 However, when
learning force fields in practice, phase space averages are
replaced by statistics calculated from MD trajectories to create
tractable sample-based variational statements. When the force
field being parametrized is not highly flexible, the distinction
between phase space averages and trajectory statistics is often
not important. In contrast, when using highly flexible modern
machine-learned force field representations (e.g., neural
networks), this distinction is critical. Parameterizing a
machine-learned force field on a finite trajectory may lead to
overfitting, in which a force field with optimal performance on
a training trajectory may perform poorly on new config-
urations.13,21,58 More flexible potentials usually require more
data for their optimization; with a fixed reference trajectory,
this imposes an effective upper bound on the complexity of
feasible force fields, limiting the application of flexible
functional forms.
While difficulties with finite reference data are similarly

exhibited with atomistic machine-learned force field develop-
ment, the training data used when force matching at the CG
resolution contain less information than their atomistic
counterparts: energies are not available, and forces are
noisy.21 The noise present in the forces may be an order of
magnitude greater than the signal and can be viewed as a major
factor in the high data requirements of machine-learned CG
force fields.
The present work shows that designing the force mapping to

reduce this noise improves trained CG force fields consid-
erably. We leverage Ciccotti et al.,59 showing that the mean
force can be obtained via multiple distinct force mappings as
long as they obey consistency requirements related to the
configuration mapping and molecular constraints in the
reference system (Figure 1). We formulate a variational
statement that minimizes the noise of the mapped forces,
significantly improving the signal-to-noise ratio of the force
matching training objective. We also show that both high noise
and constraint-inconsistent force mappings significantly
degrade learned CG force fields. While these results apply to

all force-matched CG models, they are especially important for
neural network CG potentials, which are sensitive to noise.60

An open-source implementation of the proposed force
mapping optimization is provided at https://github.com/
noegroup/aggforce.
Force Matching with Constraints. Consider an atomistic

system with atom positions r n3 and a potential energy
function V(r) in the canonical ensemble at temperature T.
Atomistic holonomic constraints (e.g., rigid bond lengths) are
incorporated as a system of equations, σ(r) = 0.
W e c o n s i d e r a l i n e a r m a p p i n g o p e r a t o r

r R: ,n N3 3 that maps from fine to coarse
configurational degrees of freedom. Under mild assump-
tions,36,59 this mapping induces the many body PMF
W : N3 through the principle of thermodynamic
consistency

R r r re e ( ( )) ( ( ))dR rW V( ) ( )
(1)

where β = (kBT)−1 and kB is the Boltzmann constant. The
integral in eq 1 represents a Boltzmann-weighted average over
all FG configurations that correspond to a given CG
configuration and obey the constraints. Computing this
integral over FG states directly is not feasible for most systems
of practical interest. Instead, W can be approximated by
optimizing over candidate potentials U(R; θ) with tunable
parameters θ using variational principles, such as relative
entropy minimization28 or force matching.36

In force matching, FG positions r and forces f = −∇V(r) are
recorded from an equilibrium simulation and mapped to the
CG space to yield a training data set of instantaneous force-
coordinate pairs R( , ){ }. The optimization statement
underlying force matching is found by minimizing the mean-
squared deviation between model and training forces

r RU( ) ( ; ) ( ; )r R rFM FM 2
2= = (2)

where ⟨x⟩r ≔ ∫ xp(r)δ(σ(r))dr denotes the thermodynamic
average over the FG equilibrium distribution p(r) ∝ e−βV(r). As
previously noted, in practice, force fields are produced by
minimizing a sample-based approximation to eq 2 using

Figure 1. Different force mappings for the same “slice” coordinate mapping visualized using the TRP9 residue of the chignolin miniprotein. Non-
zero mapping contributions are color-coded. The coordinate slice mapping preserves only Cα and is shown in panel a. Multiple possible force maps
are presented in panel b: (i) applying the same slice mapping to forces is invalid as a result of a rigid bond between Cα and connected hydrogen and
leads to an inaccurate CG force field; (ii) the “basic” aggregated force mapping, in which the forces of all holonomically constrained atoms
contribute with equal weight to the mapped force; and (iii) the statistically optimal force mapping, in which all atoms can contribute with weights
that are optimized to reduce the statistical uncertainty of the CG force.
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R( , ){ }, possibly with regularization.13,61,62 Analogous to the
configurational map , we need to define a force map that
projects atomistic forces to the CG space in such a way that
the mapped forces are an unbiased estimator of the mean
force

RW( )r R =| (3)

w h e r e w e u s e t h e n o t a t i o n
R r R rx x ( ( )) / ( ( ))r R r r| for conditional

averages.
Def ining Valid Force Mapping Operators. Ciccotti et al.59

found the relation between the CG mean force, −∇W(R), and
the atomistic forces, −∇V(r), by differentiating through the
analytical expression of the many body PMF in eq 1. They
showed that the (negative) mean force may be expressed as

Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖR r r rW V k T( ) ( ) ( ) div ( )
r R

r

B

( )

=
|

= (4)

where r B Bdiv ( ) (div , div , ...)T
1 2= denotes the divergence

per CG coordinate. The (local) mapping r( ) N n3 3× is a
valid force projection if it obeys the following relations:
(i) orthogonality to the constraints

r r( ) ( ) 0T = (5)

(ii) compatibility with the configurational mapping

r r I( ) ( )T = (6)

Condition i ensures that the mapped forces do not act against
any atomistic constraints. This is important because rigid
constraints do not transmit force information. Thus, the
mapping operator must remove spurious (off-manifold)
contributions to the force to not pollute the mean force
computation. Condition ii ensures that the force mapping is
consistent with the many body PMF induced by the
configurational map.
Importantly, eqs 5 and 6 define a system of equations for

each atomistic configuration r that is usually highly under-
determined. This means that the force mapping operator is
generally ambiguous for a fixed configurational mapping. It can
even vary as a function of the FG coordinates r. Previous work
has not made full use of this flexibility. Instead, a common
choice to meet condition ii is to define the force map as the
pseudoinverse,14,15,18 i.e., ( )T 1= . Alterna-
tively, Noid et al.36 defined a set of conditions to satisfy both i
and ii in the case of specialized configurational and force
mapping operators. They demand that all atoms that are
involved in a constraint must contribute with the same force
mapping coefficient. Furthermore, atoms must be configura-
tionally uniquely associated with a single bead to have force
contributions to that bead. These conditions restrict the design
of considerably and do not have a solution for some
configurational maps when molecular constraints are present
(e.g., the slice mappings considered in this article).
To give an example of the actual flexibility of the force

mapping operator, consider the setup underlying most of our
computational experiments. Reference FG simulations are run
with constrained covalent hydrogen bonds as is typical for
biomolecular simulations.63 For the configurational mappings,
we use slice mappings, where bead positions are identical to
the positions of selected individual heavy atoms (Figure 1a).

Under the additional conditions that does not change as a
function of configuration and contributions are the same along
each spatial component, conditions i and ii are satisfied by

l

m

ooooooooooooooooo

n

ooooooooooooooooo

i
I

i

j

B

B

1, for the one heavy atom that is 
identified with bead

0, for heavy atoms that are identified 
with a different bead

, for all hydrogens connected to heavy 
atom

arbitrary , for all other heavy atoms

Ii

Ij

=

where we have used B̲Ii to denote the static contribution of
atom i to CG bead I in (see the Supporting Information).
The arbitrary coefficients of all heavy atoms that are not
identified with or constrained to any CG bead imply
considerable flexibility in choosing the force map, which we
exploit for noise reduction.
Dual Variational Principle for Force Matching and Noise

Reduction. As pointed out in previous work,13 the force residual
in eq 2 can be decomposed into PMF error and noise. The
PMF error represents the bias and variance as a result of the
limited expressivity of the CG model and finite data, while the
noise is associated with the dimensionality reduction and
represents the inherently stochastic nature of the mapped
training forces from the perspective of the CG model. When
machine-learned force fields are optimized with force
matching, the noise contribution can dominate the force
residual,13,21 which leads to high variance and, thus, data
inefficiency and a tendency to overfit.60 The inherent flexibility
in the choice of force mapping suggests that this situation can
be improved by simply switching to a different force mapping
scheme. We will therefore search for force maps that both
satisfy the consistency relations in eqs 5 and 6 and reduce the
noise in the gradient estimator associated with the force
residual in eq 2. To this end, we first derive a new dual
variational principle for force matching and noise reduction.
We then use this insight to propose an efficient algorithm to
produce forces that make for a more robust training objective.
To formalize the optimization of the force mapping, assume

that we have a family of valid force mapping operators r( ; )
that are parametrized by real vector η. This means that r( ; )
satisfies conditions i and ii for all choices of η (see the
Supporting Information). Given such a parametrization of
force maps, the force matching residual in eq 2 becomes a
function of both the force map and the CG potential
parameters. The integrand of the residual can be decomposed
into three components

r R r

R r r

U( ; , ) ( ; ) ( ; )

PMF error( ; ) noise( ; ) mixed term( ; , )

RFM 2
2=

= + +
(7)

similar to that by Wang et al.13 While Wang et al. use these
terms to denote averages, we use them here in a pointwise
sense and with a parametrized force map. The mixed term is
mean-free (in the limit of infinite sampling),13 and the mapped
force is defined as in eq 4. This decomposition is discussed
in detail in the Supporting Information. Here, we summarize
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the most important implications. First, the PMF error does not
depend upon η. Thus, for any valid force mapping scheme,
minimizing the force matching loss r( ; , ) rFM with respect
to θ asymptotically yields the many body PMF (given a
sufficiently powerful class of candidate potentials). Second, the
noise term does not depend upon θ. Thus, for any guess of
candidate potential, minimizing the force matching loss

r( ; , ) rFM with respect to η gives the same force map. A
perfect, possibly nonlinear, zero-noise map would project each
atomistic force exactly onto the mean force. Third, the mixed
term controls the amount of noise on the parameter gradients.
Improving the force map facilitates finding the CG potential
and vice versa.
In summary, the symmetry of the generalized force matching

loss in eq 7 reflects two orthogonal approaches to approximate
the mean force. The first approach (classic force matching)
tries to find the force field that best explains the atomistic
forces. The second approach (noise reduction) tries to find the
mapping that minimizes the variance of the mapped forces.
These approaches will benefit from each other when used
together. In the following section, we exploit this concept by
defining force maps that facilitate efficient optimization of the
candidate potential.
Computationally Ef f icient Optimization of Linear Force

Mappings. One way to use this variational principle is the
joint optimization of the force residual over θ and η. However,
such an approach requires significant effort, e.g., computing the
expression in eq 4 at each joint optimization step. Instead, we
construct a configuration independent (“linear”) force map,

which minimizes the average magnitude of the mapped forces;
i.e., we find the optimal map parameters as

rarg min ( ; )
ropt 2

2=
(8)

Note that this optimization term has previously been used to
select optimal configurational maps14 but not optimal force
maps. We algebraically show in the Supporting Information
that the force mapping scheme obtained in this way reduces a
bound on the variance of the parameter gradient. The gradient
variance is crucial because neural networks are typically trained
using stochastic gradient descent-based algorithms, which
iteratively follow the parameter gradient estimated on small
batches of training examples.64,65 The gradient estimated using
a single batch can be viewed as a noisy estimate of the gradient
that would be obtained using all of the training samples; this
noise can slow the training convergence of neural networks.
Significant effort has aimed at reducing the noise generated at
each update by utilizing control variates generated from
previous optimization iterations.65−69 However, these modified
optimization approaches have had limited success when
applied to neural networks, likely as a result of the speed at
which optimization iterations diverge from the calculated
variates.70 Equation 8 may be viewed as utilizing control
variates in the force-averaging procedure to minimize gradient
noise. The control variates are the linear combination of
various atomistic forces. Unlike existing modifications of
stochastic gradient descent, these control variates incorporate
information into the training data that would be lost when

Figure 2. Coarse-graining of water dimers. (a) CG coordinates are defined by retaining only oxygens. (b) Two force mappings were investigated: a
slice map and a map with equal weights for oxygens and hydrogens. Turquoise and black represent contributions to beads 1 and 2, respectively. (c)
Results from constrained atomistic data: forces projected onto the oxygen−oxygen distance through a slice and aggregation mapping. Last row: CG
potentials obtained from the projected force data compared to the empirical PMF. (d) Same as panel c for atomistic data without constraints. (e)
Mean validation loss during training of the flexible water dimer. The shaded areas in panels c and d represent the values observed over 10
experiments. The gray lines in panel e represent individual experiments.
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using a basic, non-optimized force mapping and result in a
considerable reduction in variance.
Furthermore, solving eq 8 is computationally efficient71 and

allows us to optimize the mapped forces before optimizing the
CG potential. Consequently, the force optimization becomes a
part of the data preparation pipeline, and we can perform force
matching as usual but with more robust gradients.
The choice of force mapping can significantly affect the

quality of the resulting CG force field. This is first
demonstrated using a low-dimensional CG potential to
model a water dimer, which allows us to visualize and discuss
the issues caused by atomistic constraints. We then conclude
by investigating the effect on high-dimensional CG neural
network potentials trained to reproduce the folding behavior of
a fast-folding variant of the miniprotein chignolin (CLN025)
and tryptophan (Trp) cage, systems commonly used to
benchmark machine-learned CG force fields.13,15,16,19 For
both test cases, the Supporting Information contains detailed
descriptions of the simulations, CG models, and training
procedures.
Water Dimers Demonstrate the Importance of Force Mappings.

The water dimer system (Figure 2) contains two TIP3P
molecules72 interacting via Coulomb and Lennard-Jones
interactions in a harmonic external potential. Two data sets
are created by running MD simulations with and without rigid
bond and angle constraints. In both simulations, the most
favorable configuration is the dimer state, with an oxygen−
oxygen distance slightly below 0.3 nm, although distances of up
to 3 nm are also explored.
The configurational mapping and candidate CG force field

basis were fixed: bead positions were identified with oxygen
positions (Figure 2a), and the CG potential was defined as a
linear combination of radial basis functions on the oxygen−
oxygen distance. Two aspects of the coarse-graining task were
varied: the force mapping (Figure 2b) and the training data
(rigid versus flexible). We first focus on the rigid system to
discuss the influence of atomistic constraints.
Rigid Water: Sliced Forces Are Invalid with Bond Constraints.

Most biomolecular simulations constrain the fastest moving
chemical bonds to enable time steps greater than 1 fs.63 MD
engines enforce these constraints by modifying particle
positions and velocities at each time step but do not modify
the forces. As a result, the reported forces contain off-manifold
contributions, such as spurious radial forces acting along a rigid
bond; these artifacts do not influence the atomistic distribution
or dynamics but can pollute the force matching objective when
not properly taken into account. The orthogonality condition
in eq 5 ensures that force mappings eliminate such spurious
atomistic contributions to the mapped force. The simplest way
to enforce this condition is by setting B̲Ii = B̲Ij for any pair of
constrained atoms i and j, such that forces felt by atoms
connected to atoms preserved in the configurational map via
constrained bonds always contribute equally to the mapped
force. Throughout this work, we refer to force mappings that
only include force contributions from configurationally
preserved and their constraint-connected atoms as basic
(aggregated) force mappings (cf. Figure 1). For the water
dimer with constraints, Figure 2b shows the sliced and basic
aggregated force mapping schemes. Slicing in panel i of Figure
2b violates the orthogonality condition, while basic aggregation
produces valid force mapping for the configurational slice
mapping in Figure 2a.

Using invalid force mappings can have a detrimental effect
on learning CG force fields. Figure 2c shows the mapped forces
(using both mapping schemes) versus the bead-to-bead
distance. Both force mappings reproduce the intermolecular
repulsion at small distances. However, only the basic
aggregated forces capture the hydrogen-bond-driven water−
water attraction. This flaw is most salient after training CG
potentials and evaluating them: potentials trained using basic
aggregated forces match the empirical PMF computed from a
histogram of the data. In contrast, potentials trained against the
sliced forces are inaccurate: they express an overly weak
attraction and overestimate the equilibrium distance. This
example illustrates how force mappings that violate atomistic
constraints can impede convergence to the many body PMF.
Flexible Water: Aggregated Forces Drive Data-Ef f icient Coarse-

Graining. For the water dimer without constraints, both the
slice and basic aggregated force mappings are consistent with
the configurational map but do not both perform equally well.
Figure 2d shows forces mapped to the bead-to-bead distance.
The sliced forces are dominated by the noise produced by
fluctuations in the intramolecular bonds and angles. In
contrast, basic aggregation annihilates these contributions
completely and greatly reduces the noise in the mapped forces,
which is reflected by the magnitude of force matching loss in
Figure 2e. Notably, solving the minimization task (eq 8) yields
the basic aggregation scheme as the optimal linear force
mapping (up to a 10−3 numerical tolerance). This shows the
noise reduction mechanism at work: aggregating the force over
groups of adjacent atoms removes force fluctuations coming
from the “stiff” local terms of the atomistic potential.
Improving the signal-to-noise ratio of the mapped forces

helps train CG potentials on finite data sets. As shown in
Figure 2d, CG models trained on sliced forces only reproduce
the mean force in regions where data are abundant, i.e., near
the equilibrium distance. In contrast, models trained on basic
aggregated forces yield a high-fidelity approximation to the
many body PMF that agrees well with atomistic statistics. This
result supports the idea that, even when slice force mappings
are valid given underlying atomistic constraints, using noise-
reducing force mappings improves the data efficiency of
creating CG force fields.
Optimized Forces Improve Protein Models. The proposed force

mappings produce significant improvements when coarse-
graining proteins using high-dimensional force fields. Chigno-
lin and Trp cage, miniproteins consisting of 10 and 20
residues, respectively, exhibit folding behavior and serve as
computationally efficient systems for investigating CG force
field design. Here, we model these proteins by only preserving
the positions of their Cα (Figure 3) via the approach described
by Husic et al.15 using sliced forces and two modified force
mapping operators.
The reference atomistic simulations utilized constrained

bonds to hydrogens; as a result, the sliced force approach,
which only includes the forces present on Cα, is not a valid
force mapping for either protein. To investigate valid force
mappings, we considered two options. First, we tested the basic
aggregation force mapping: forces for each CG site were
defined as summing the forces of each Cα with its connected
hydrogen(s). Second, we produced an optimized force
mapping by solving eq 8; this is referred to as the optimized
mapping (Figure 1). Note that water was not considered when
creating the optimized force mapping.
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The resulting CG force fields were validated using MD and
resulting free energy surfaces defined along slow coordinates
produced via time-lagged independent component analysis
(TICA)73−75 on the reference atomistic trajectories. These
surfaces were compared to that of the reference atomistic
trajectory in three ways. For all approaches, the statistics along
the first two TIC components from the model and reference
data were histogrammed. In the first approach, the difference
in the free energy was squared and averaged across bins. For
the second approach, the Jeffreys divergence (the arithmetic
mean of the Kullback−Leibler divergence performed in both
directions) was calculated between the two binned distribu-
tions. In the third approach, the Jensen−Shannon divergence
was similarly calculated between the two binned distributions.
Further details on calculating divergences may be found in the
Supporting Information.
These measures of errors were calculated for models trained

using various subsets of the atomistic data; these subsets were
produced using two strategies. First, the effect of reduced data

set size was investigated by striding the atomistic data at a
variety of values (see the Supporting Information). Second, for
each stride, the atomistic data were equally partitioned into five
sections, and five models were trained using different subsets of
these sections in a strategy similar to cross-validation: each
model was trained using a different 4/5 of the strided atomistic
data. These approaches allow us to study the effect of the
training set size while quantifying sensitivity to the particular
data used.
The free energy surfaces of the CG models parametrized

using large training sets are visualized in Figures 4 and 5, and
the performance of these training procedures as a function of
the training set size is visualized in Figure 6. Collectively, the
sliced force models exhibit the worst accuracy; their erroneous
behavior at a large sample size for Trp cage under the Jeffreys
metric is due to spurious states between the folded and
unfolded basins (Figure 5 and the Supporting Information).
Similar artifacts are seen for large-data chignolin slice models,
because the folded basin is slightly shifted (Figure 4 and the
Supporting Information). The behavior in Figure 6 suggests
that optimized forces increase efficiency by a factor of
approximately 3 over basic forces, each of which avoid the
errors produced by the sliced forces. Note that, as in the case
of the water dimer, optimized forces result in significantly
lower force residuals (Figures S1 and S7 of the Supporting
Information). Evaluation of models trained using various force
strategies on hold sets using a fixed force aggregation strategy
(Table S3 of the Supporting Information) demonstrates that
optimized force models result in lower force residuals;
however, we note that force residuals and accurate free energy
surfaces often have a complex relationship.76−78

Similar to the case of the rigid water dimer, these results
strongly suggest that training using invalid slice force mappings
introduces artifacts. These errors appear to be resolved using
force maps that satisfy the requirements outlined above.

Figure 3. Visualization of the configurational CG mapping used to
model chignolin. The solvated atomistic resolution used for the
reference simulations is shown on the left, while the CG
representation (which preserves only Cα) is shown on the right.

Figure 4. Free energy surfaces calculated for chignolin. The top row compares surfaces along the slowest TIC. Colored lines represent multiple
force fields, each trained using a different subset of the reference trajectory. Gray lines indicate the free energy of the reference trajectory. The
bottom row contains surfaces calculated for chignolin across the two slowest TICs using a single shared subset of the data. Each panel contains data
generated using a different force mapping or the reference data for comparison.
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Furthermore, using optimized forces results in a substantial
improvement over basic aggregated forces, motivating their
application also to systems that do not contain holonomic
constraints. While large amounts of training data diminish the
advantage of using optimized forces, there does not appear to
be a downside to their application in all situations. Collectively,
our results suggest that optimized forces result in less
overfitting and lower model variance with regard to both the
force residual and free energy surface.
It is important to note that, while the expressions in this

paper apply to configurational maps that average positions
(e.g., a center of mass mapping encompassing each amino

acid), these aggregated configurational maps may be less likely
to exhibit the problems demonstrated for sliced configurational
mappings. This is because the force mappings derived from
such aggregation mappings using previously established rules36

may satisfy i and ii in eqs 5 and 6 for typical constraints and
incorporate a diverse set of atomistic forces. However, whether
such mappings are appropriate for the application depends
upon other aspects of force field preparation, such as the
imposition of functional forms on bonded force field
contributions. Similarly, we note that future comparisons
between force matching results using different configurational
mappings should be cognizant of the force mapping used and

Figure 5. Free energy surfaces calculated for Trp cage. The top row compares surfaces along the slowest TIC. Colored lines represent multiple
force fields, each trained using a different subset of the reference trajectory. Gray lines indicate the free energy of the reference trajectory. The
bottom row contains surfaces calculated for Trp cage across the two slowest TICs using a single shared subset of the data. Each panel contains data
generated using a different force mapping or the reference data for comparison.

Figure 6. TIC1−TIC2 free energy error versus training size. Each column specifies an error measure: the mean squared error (MSE) of the free
energies, the Jeffreys divergence, or the Jensen−Shannon divergence; each row specifies a protein; and each color represents a force mapping. Each
force mapping and training size was investigated by training five models on subsets of the reference data (see the main text); the mean of the error
is plotted as a line, while the maximum and minimum of errors correspond to the bounds of the ribbon.
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that such force mappings should be reported to facilitate
reproduction.
Conclusion. As machine-learned force fields become

increasingly powerful, the present work paves the way for
their more efficient optimization. We demonstrate that the
selection of force mapping may significantly affect the resulting
force field. The proposed optimized force mapping schemes
reduce overfitting and increase accuracy, robustness, and data
efficiency. The possibility to partly decouple force mapping
coefficients from the configurational map may also elevate
approaches to optimize configurational mappings alongside the
CG potential.14 Future work may further exploit the presented
variational principle using position-dependent force mappings
and joint optimization of the force map and CG potential.
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